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Received 22 December 2003 / Received in final form 3 October 2004
Published online 23 December 2004 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2004

Abstract. The Gutzwiller variational wave function is shown to correspond to a particular disentanglement
of the thermal evolution operator, and to be physically consistent only in the temperature range U �
kT � EF , the Fermi energy of the non-interacting system. The correspondence is established without
using the Gutzwiller approximation. It provides a systematic procedure for extending the ansatz to the
strong-coupling regime. This is carried out to infinite order in a dominant class of commutators. The
calculation shows that the classical idea of suppressing double occupation is replaced at low temperatures
by a quantum RVB-like condition, which involves phases at neighboring sites. Low-energy phenomenologies
are discussed in the light of this result.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.27.+a Strongly correlated electron
systems; heavy fermions – 71.30.+h Metal-insulator transitions and other electronic transitions

1 Introduction

Variational wave functions are a highly select class of re-
sults in the physics literature. There are only five which
are widely used: Hartree-Fock and BCS for weak pertur-
bations of the Fermi sea [1], Feynman’s ansatz for the
ground state of liquid 4He [2], Laughlin’s wave function
for the fractional quantum Hall effect [3], and Gutzwiller’s
ansatz for the ground state of the Hubbard model [4]. The
last two fall into the class of Jastrow wave functions [5],
one of which was also used to describe 4He and 4He–3He
mixtures [6], and which are currently considered generic
for strongly correlated problems.

Of these, Gutzwiller’s is by far the least understood.
Its underlying physical idea is that electrons of one spin
see those of the other as a ‘smeared background’ [4]. This
very drastic assumption is still not sufficient to provide an
operational prescription, but is supplemented by another,
the ‘Gutzwiller approximation:’ electrons of one spin see
the others ‘as if occupying a band of width zero’ [4], i.e.
their mass is taken to be infinite. This prescription was
never given a justification from first principles in any finite
dimension. It is true by construction when the number of
dimensions approaches infinity [7], because the scaling of
hopping overlaps, required to obtain finite results in that
limit, makes all motion effectively diffusive.

The present work approaches Gutzwiller’s wave func-
tion from a perspective not suggested by its variational
origin. It turns out that it is based on a one-step Trotter
decomposition of the thermal evolution operator, strictly
valid only if the on-site repulsion U is much lower than
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the temperature. This insight provides a natural scheme
for improvement. A direct implementation of it shows that
Gutzwiller’s prescription to remove double occupation is
the first step in a transcedent series. When summed, it
yields a new projector, which imposes a quantum condi-
tion with much stronger selectivity than the one remov-
ing double occupation. In the physical subspace satisfying
this condition, Gutzwiller’s program may be carried over
to the strong-coupling regime kT � t � U as well, where
t is the hopping overlap. It can also be shown that at
least at the level of expectation values, the on-site inter-
action does not scatter out of the new physical subspace.
Unlike the requirement of no double occupancy, the quan-
tum condition cannot be factorized into commuting local
terms, indicating that relative phases on neighboring sites
play an important role in the realization of the insulating
ground state. The arguments are limited to the immedi-
ate vicinity of half-filling, where the configuration space
for processes not considered here is small.

2 The Gutzwiller ansatz

Take the Hubbard Hamiltonian on a square lattice, H =
K +V , where K is the kinetic term and V = U

∑
i ni↑ni↓.

Define the operator K by a factorization of the imaginary-
time evolution operator,

e−β(K+V ) ≡ e−βV/2e−βKe−βV/2. (1)

The main result of this section is that the Gutzwiller
ansatz neglects the entanglement of K and V . To prove
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this, take K = K and calculate the expectation with re-
spect to any operator O:

tr Oe−βV/2e−βKe−βV/2

tr e−βK
=

∑
P 〈P | e−βV/2Oe−βV/2e−βK |P 〉

tr e−βK

=
∑

PRR′
〈P |R〉 〈R| e−βV/2Oe−βV/2 |R′〉 〈R′|P 〉 〈P | e−βK |P 〉

tr e−βK

=
∑

RR′

[
e−βU(DR+DR′)/2 〈R|O |R′〉

]∑

P

〈P | e−βK |P 〉
tr e−βK

× 〈R′|P 〉 〈P |R〉 . (2)

Here |P 〉 are momentum eigenstates, and |R〉 , |R′〉 posi-
tion eigenstates. Use has been made of the fact that K
is diagonal in momentum, and V in position: V |R〉 =
UDR |R〉, where DR is the number of doubly occupied
sites in configuration |R〉. Now perform the same calcu-
lation for the expectation value 〈g|O |g〉 in Gutzwiller’s
wave function |g〉 = P (g) |Ψ〉, with |Ψ〉 a non-interacting
ground state and P (g) the Gutzwiller projector:

P (g) =
∏

i

[1 − (1 − g)ni↑ni↓]

≡
∏

i

[
Êi + Âi↑ + Âi↓ + gD̂i

]
, (3)

where the hatted operators are projectors onto empty
sites, sites occupied by a single spin (up or down), and
doubly occupied sites, respectively [8]. Then

〈g|O |g〉 =
∑

RR′
〈Ψ |R〉 〈R|P (g)OP (g) |R′〉 〈R′ |Ψ〉

=
∑

RR′

[
gDR+DR′ 〈R| O |R′〉] 〈R′|Ψ〉 〈Ψ |R〉 , (4)

remembering that P (g) |R〉 = gDR |R〉. Now observe that
the non-interacting ground state |Ψ〉 is itself a momentum
eigenstate. The same term P = Ψ will dominate the sum
over P in equation (2), if one takes the temperature low
enough. The expectation value (2) then reads

tr Oe−β∗V/2e−β∗Ke−β∗V/2 ≈
∑

RR′

[
e−β∗U(DR+DR′ )/2 〈R| O |R′〉

]
〈R′|Ψ〉 〈Ψ |R〉 , (5)

where β∗ is a particular value of the temperature, for
which the non-interacting system is in its ground state,
to any desired accuracy.

We are led to the astonishing conclusion, that the re-
sult (5) of this procedure is the same as taking expectation
values with respect to Gutzwiller’s variational wave func-
tion, equation (4). The correspondence

〈g| O |g〉 ↔ tr Oe−β∗V/2e−β∗Ke−β∗V/2 (6)

between the two expressions (4) and (5) is established sim-
ply by replacing

g ↔ e−β∗U/2. (7)

The fact that the denominator in equation (2) was tr e−βK

and not (more logically) tr e−βKe−βV is counterpart to
the fact that 〈g|g〉 is not normalized. Taking O = 1, it
immediately follows that 〈g|g〉 ↔ tr e−βKe−βV /tr e−βK

under the above correspondence.
The original calculation of Gutzwiller also contains a

prescription to fix β∗, or g. This is to take O = H , the
Hamiltonian, and obtain g variationally. However, it is
difficult to imagine such a procedure to compensate for
the steps which were taken to arrive at Gutzwiller’s form,
equation (5). Neglecting entanglement to get from equa-
tion (1) to equation (2) requires U � kT , or more pre-
cisely, Ut � (kT )2. This is the step usually made in the
Trotter formula, for a single short ‘slice’ of the evolution
integral, which is eventually taken to zero (i.e. the tem-
perature to infinity). To single out the ground-state term
in equation (2) and so obtain equation (5), requires, on
the other hand, the temperature to be low, kT � EF , the
Fermi energy of the non-interacting ground state. The two
are possibly consistent only in the range

U � kT � EF , (8)

which is not the strong-coupling regime kT � t � U , for
which the Gutzwiller approach was intended.

On the other hand, in practice the expectation
value (4) is usually calculated in the so-called Gutzwiller
approximation, so it is desirable to understand its effect
on the above derivation. It was shown in reference [8] that
the approximation amounted to replacing the configura-
tional overlaps by a constant,

〈R′|P 〉 〈P |R〉 → 1
N , (9)

where N is the number of terms in the sum over configu-
rations R, R′. Inserting this in equation (2) yields

1
N

∑

RR′

[
e−β∗U(DR+DR′ )/2 〈R| O |R′〉

]
, (10)

which is the same as obtained from equation (4) with
Gutzwiller’s approximation, without invoking the limit
kT � EF . The physical role of the Gutzwiller approxima-
tion is clear now. Instead of neglecting the excited states
in equation (2), as done above by going to low temper-
ature, it neglects the difference between the ground and
excited states. When all the terms 〈R′|P 〉 〈P |R〉 are re-
placed by the constant 1/N , of course their thermal aver-
age in equation (2) reduces to this single constant term.
One gets again the same result as if the ground-state term
alone had been taken into account.

To summarize, calculating the expectation value of
any operator with respect to Gutzwiller’s wave func-
tion is exactly equivalent to the following three steps,
when calculating its thermal expectation with respect to
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e−β(K+V ): first (a) neglect the entanglement of the poten-
tial and kinetic terms, so that one can replace

e−β(K+V ) → e−βV/2e−βKe−βV/2, (11)

forgetting all commutators of V and K; then (b) take only
the ground-state term from equation (2); finally (c) use
a variational procedure to fix the left-over temperature-
dependent parameter e−β∗U/2 = g, irrespective of consis-
tency with the previous two steps. Needless to say, the first
two steps are themselves hardly justifiable in the strong-
coupling limit U � t.

3 Lowest-order improvement

In the previous section, it was shown that the expecta-
tion values calculated with the Gutzwiller ansatz can be
obtained in a thermal formalism which neglects the en-
tanglement of kinetic and potential energy terms. This is
true irrespective of the use of the Gutzwiller approxima-
tion, which itself amounts to replacing the thermal average
in equation (2) with a normalization constant. The whole
procedure retains only a classical attenuation of double
occupation, such that equation (1) is approximately valid
with K = K, i.e. all quantum dynamical correlations, com-
ing from the commutators, are neglected. The main sub-
ject of the present work is to investigate the effect of the
neglected commutators systematically.

Including the commutators amounts to adding quan-
tum correlations to Gutzwiller’s wave function, which
should be present in the strong-coupling low-temperature
state, kT � t < U . Technically, this boils down to find-
ing a better expression for the operator K in equation (1).
The reason K 	= K is that the commutator [V, K] is not
zero. Explicitly,

V k ◦ K = tUk
∑

〈i,j〉
σ

(ni,−σ − nj,−σ)k

×
(
a†

iσajσ + (−1)ka†
jσaiσ

)
, (12)

where t is the hopping overlap, and the operation ◦ is a
commutator,

V n ◦ K ≡ [
V, V n−1 ◦ K

]
(13)

with V 0 ◦K ≡ K. The vanishing of the commutator is ob-
viously consistent with the original ‘smeared background’
interpretation, ni,−σ → 〈n−σ〉. This points the way to an
a posteriori justification of the Gutzwiller ansatz (though
not of the Gutzwiller approximation). One can claim to
work in a physical regime where it is sensible to replace
the number operators by the average occupation of a site,
as it should be in a doped metallic state, away from the
metal-insulator transition. There one can hope that the
high-temperature decomposition, equation (11), may in
fact extend to low temperature.

In the remainder of this section, the effect of including
a single additional commutator will be studied. It will be

shown below that the commutator [V, K] itself does not
contribute to K, because of the symmetry of the decom-
position (1), so the lowest non-zero contributions to same
order in β are [V, [V, K]] and [K, [V, K]]. When U � t, the
limit of interest here, the first is more important. Retain-
ing only this one term,

K → K +
1
6

(
β

2

)2

[V, [V, K]]

= t
∑

〈i,j〉
σ

[

1 +
(βU)2

24
nij,−σ

] (
a†

iσajσ + a†
jσaiσ

)

≡ K + K1, (14)

where the numerical factors will also be justified later, and

nij,−σ = (ni,−σ − nj,−σ)2 = ni,−σ + nj,−σ − 2ni,−σnj,−σ

(15)
is equal to one if the hop changes the number of doubly
occupied sites, and zero otherwise.

How can one use this result to improve Gutzwiller’s
ansatz? Note that the norm of Gutzwiller’s wave function
can be written

〈Ψ |P (g)P (g) |Ψ〉 ↔ tr e−βV/2e−βKe−βV/2

tr e−βK
(16)

under the formal correspondence of the previous section.
Obviously, one can interpret this as

P (g) ↔ e−βV/2. (17)

To confirm the interpretation, recall the well-known alter-
native form [9] of writing the Gutzwiller projector (3),

P (g) = exp

[

−η
∑

i

ni↑ni↓

]

= g
∑

ni↑ni↓ , (18)

where η = − ln g. But this is just the right-hand side
of (17), under the correspondence (7).

Now, the additional commutator in equation (14)
amounts to replacing K by K + K1 in the numerator
of (16). Since we have decided not to include any addi-
tional commutators, we may rearrange terms at will, and
write

tr e−βV/2e−βK1/2e−βKe−βK1/2e−βV/2

tr e−βK
(19)

for the ‘improved’ right-hand side of (16). It is obvious
how to write an improved left-hand side now. There should
be an additional projector, sensitive to configurations in
which a hop would change the number of doubly occupied
sites. Calling it P1(g1), one may write

P1(g1) ↔ e−βK1/2. (20)

Explicitly,

P1(g1) = exp




−η1

∑

〈i,j〉
σ

nij,−σ

(
a†

iσajσ + a†
jσaiσ

)





= g
∑

nij,−σ(a†
iσajσ+a†

jσaiσ)
1 , (21)
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where η1 = − ln g1, and the new variational parameter
corresponds to

g1 ↔ e−β3tU2/48. (22)

Hence the (systematically) improved variational wave
function is

|g, g1〉 = P1(g1)P (g) |Ψ〉 . (23)

The practical aspects of evaluating the projector (21) are
beyond this article. One immediately obvious technical
complication is, however, theoretically significant: the pro-
jector (21) cannot be written in the product form (3). The
reason is formally that the individual terms in the sum
in equation (21) do not commute. Physically, this means
that even the first quantum correction to Gutzwiller’s pro-
gram for the one-band Hubbard model already involves
the relative phases of fermions on neighboring sites. The
importance of phases was already noticed in reference [10],
where it was shown that if a projector can be factorized
into commuting local terms, then it cannot produce phys-
ical insulating behavior. In the following, it will be argued
that while the use of projectors to remove unwanted parts
of configuration space may be perfectly valid, such pro-
jectors cannot be used automatically to define effective
Hamiltonians.

4 Extension to all orders

In the previous section, it was shown that the first quan-
tum correction to Gutzwiller’s projection involves bond
phases. This is a setback for the local approach, so one
is naturally led to ask, how important that correction is.
What is the range of validity, in temperature, of the orig-
inal ansatz? As luck would have it, this question admits
of a sharp answer, because the correlation embodied in
K1 (or P1) above can easily be studied to all orders in
β. Unfortunately, the answer is rather disappointing: the
low-temperature regime is approached exponentially fast.
This statement should be moderated insofar as we really
have in mind the state near half-filling. As already noted,
any argument establishing a ‘smeared background’ auto-
matically justifies Gutzwiller’s ansatz at all temperatures.
On the other hand, in the vicinity of the metal-insulator
transition, one expects an electron to be scattered many
times for each step it takes: there is not enough propaga-
tion in space to average out the local density. Then (12)
contains the dominant processes affecting kinetic motion
near half-filling, when U > t � kT .

The resummation of all commutators in (12) does not
introduce new correlations, because

(ni,−σ − nj,−σ)2k = (ni,−σ − nj,−σ)2 = nij,−σ (24)

is independent of k. However, it will show how fast (in
temperature) they become important, if one can calcu-
late how these commutators enter K. The linear terms in
a Baker-Campbell-Hausdorff (BCH) formula can be ob-

tained by standard tricks [11], to give

K =
sinh

(
βV
2

)

βV
2

◦ K

+
(

1 − βK

2
coth

βK

2

)

◦ V + O(β4K2V 2) (25)

for the case of equation (1). (Some details are given in
Appendix A.) The first term is now evaluated with the
help of equation (12), remembering that the projector (24)
may be taken outside the Taylor series. One obtains

K = t
∑

〈i,j〉
σ

[1+s(βU)nij,−σ]
(
a†

iσajσ + a†
jσaiσ

)
+O(β2K2)

≡ K + K1 + O(β2K2). (26)

where we have redefined K1. The point is now that the
function

s(βU) =
sinh

(
βU
2

)

βU
2

− 1 (27)

grows exponentially with βU . The interpretation (22) of
the variational parameter g1 should be replaced by

g1 ↔ e−βt s(βU)/2. (28)

The projector P1 in equation (23) becomes important at
least as soon as

s(βU) > 1, (29)

when K1 and K become competitive. This is a much
sharper condition than intuitively expected. On the other
hand, it is also non-linear, so the correction in (26) is only
4% for kT = U , and the condition (29) is first satisfied
for kT ≈ U/4.4 . One may thus replace the lower limit
of validity of Gutzwiller’s ansatz by U/4 � kT (say), but
that is obviously not essential.

Comparing the interpretations (7) of Gutzwiller’s pa-
rameter, and (28) of g1, more can be said. When s(βU) >
U/t, the new projector P1 becomes more important than
Gutzwiller’s P . Thus the very-low-temperature regime
kT � U is completely dominated by P1, unless t/U is
exponentially small, which is not normally the case. (The
limit U/t → ∞ is discussed later on.) For kT � t < U ,
the wave-function P1(g1) |Ψ〉 represents reality much bet-
ter (exponentially better, to coin a phrase) than P (g) |Ψ〉.
The strong-coupling limit is denoted t < U rather than
t � U to avoid confusion with the limit U/t → ∞, be-
cause we need s(βU) � U/t when kT � U . However,
U/t is always taken to be sufficiently large to relegate the
neglected commutators to weak perturbations. Note that,
since s(βU) rises exponentially, such a regime is easily
achieved. For example, for kT = t/10 � t < U = 10t, one
gets

s(βU) = s(100) ∼ 1019 � U/t = 10.

The formal reason for the overwhelming dominance
of P1 at low temperature is that the iterated commuta-
tor of Hubbard’s contact interaction is non-zero to all or-
ders. By comparison, for the harmonic oscillator already
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the third iterated commutator vanishes: [x̂2, [x̂2, p̂2]] ∼ x̂2,
and similarly when x̂ and p̂ are interchanged. If all possible
commutators are arranged in a table, such that the (n, m)
cell collects those of order V nKm, this table is tridiagonal
for the harmonic oscillator, while the expression (12) gives
the first column for the contact interaction.

The final question in this section is about the rele-
vance of the other commutators in the above-mentioned
table, of which so far only the first column was treated.
At kth order in β, commutators contribute which are of
order KmV k−m ∼ tmUk−m. The first column, summed
completely by the hyperbolic sine in equation (25), con-
tains all terms with m = 1, i.e. like tUk−1, while the other
columns refer respectively to 1 < m < k. Thus at any
given order in β, the term contained in the hyperbolic sine
can be made to dominate those left out simply by increas-
ing U/t. However, one should not hastily conclude that
projectors generated by these terms are dominated by P1

at low temperature in the same sense as Gutzwiller’s P (g).
Like P1, they are expected to have hyperbolic terms in βU
in the exponent, where P is only linear in βU . Thus they
should be relatively mildly suppressed with respect to P1,
by a power of the ratio t/U . However, since suppression
by P1 is the strongest, the configuration space determined
by this projector alone is the largest one that needs to be
taken into account, at least in the vicinity of half-filling.

5 The physical subspace

Looking back at the wave function (23), in the light of
the underlying dependence (28) of g1 with temperature,
one may well wonder: what will survive such a projector
at low temperature? Even if a wave function has a very
small component to which K1 in (26) is sensitive, the hy-
perexponential suppression by P1 will annihilate it. The
way out is obvious: the physically admissible space is the
null-space of the operator K1, K1 |Φ〉 = 0, or equivalently

[V, [V, K]] |Φ〉 = tU2
∑

〈i,j〉
σ

nij,−σ

(
a†

iσajσ+a†
jσaiσ

)
|Φ〉 = 0.

(30)
This gives a precise meaning to the ‘smeared background’
condition at low temperature and near half-filling, where
it cannot be trivially satisfied by the replacement nij,−σ →
0. A more careful formulation of the same idea is

exp [−β(K + K1)] |Φ〉 = exp (−βK) |Φ〉 . (31)

However, K1 dominates K at low temperature because of
the relative factor s(βU), so one expects the physics to be
contained in equation (30) by itself. One may be tempted
to add the condition

V |Φ〉 = 0, (32)

which is the no-double-occupancy constraint, but that is
not warranted: for example, should the conditions (30)
and (32) turn out to be incompatible, the discussion in the
previous section shows that the system will choose (30)

at low temperature. By the same token, the subdomi-
nant correlations, coming from the neglected commuta-
tors, may have a say in which combination of the states
|Φ〉 turns out to be the ground state, but they cannot en-
large the physical subspace any more than the no-double
occupancy constraint: P1 acts too stringently for that (if
it does not, decrease the temperature, and/or increase
the ratio U/t). If we decide to neglect all commutators
containing at least two K’s, such as [K, [V, K]], because
they are suppressed by at least t/U , the thermal expecta-
tion value in the physical subspace may be written at low
temperature

tr Oe−βV/2e−βK+K1e−βV/2 =
∑

Φ

〈Φ| e−βV/2Oe−βV/2e−βK |Φ〉 , (33)

because the wave-functions which do not satisfy (30) have
been eliminated by the projector P1, while the admissible
ones allow the simplification (31). This has formally the
same structure as if we had made the high-temperature
disentanglement (11), i.e. used Gutzwiller’s scheme. How-
ever, the underlying physical regime is at low temperature
and strong coupling, ensured by the requirement (30) on
the states |Φ〉.

If U/t → ∞, the dominance of P1 over Gutzwiller’s P
cannot be established quantitatively. This does not inval-
idate the former reasoning, but merely opens the possi-
bility that the physical subspace is further reduced in the
calculation (33). However, there is a qualitative argument
that Hubbard’s interaction leaves the physical subspace
invariant. Namely, the identity

V AV =
1
2

(
V 2A + AV 2 − [V, [V, A]]

)
(34)

holds for any operators V and A. Now take V to
be Hubbard’s repulsion, and A = [V, [V, K]], cf. equa-
tion (30). Let |Φ〉 be a state satisfying equation (30),
i.e. A |Φ〉 = 0. Then the state V |Φ〉 also satisfies equa-
tion (30), at the level of expectation values:

〈Φ|V AV |Φ〉 = −1
2
〈Φ| [V, [V, A]] |Φ〉 ∝ 〈Φ|A |Φ〉 = 0,

(35)
because [V, [V, A]] ∝ A, by virtue of (12) and (24). In
other words, Hubbard’s repulsion does not on the aver-
age scatter out of the null-space defined by equation (30).
This is strong indication that the latter has been correctly
identified as the physical subspace.

6 Effective Hamiltonians

In the previous section, the physical subspace (30) was
found to have two important properties. One, it is on the
average invariant to V . Two, within it Gutzwiller’s disen-
tanglement (‘smeared background’) holds, so that hopping
proceeds by the bare operator K, cf. equation (31). This
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should be contrasted with the no-double-occupancy sub-
space, which is strongly perturbed by K, requiring the
introduction of projected hopping

K̃ = t
∑

〈i,j〉
σ

(1 − ni,−σ) a†
iσajσ (1 − nj,−σ) + h.c., (36)

to keep within it. Both schemes take into account that an
electron cannot hop locally onto anything but an empty
site, in which case it tunnels by the full overlap t. In the
first one, the burden of accounting for these dynamical
correlations is taken by the construction (30) of the phys-
ical subspace, while in the no-double-occupancy scheme it
is carried by the projected-hopping operator K̃.

To compare the two clearly, note that using the
projected-hopping operator in the no-double-occupancy
subspace amounts to the calculation of thermal traces of
the type

tr Oe−βV/2e−βK̃e−βV/2 (37)

at arbitrarily low temperature. Now, the exact expression
for the trace is

tr Oe−β(K+V ) = tr Oe−βV/2e−βKe−βV/2, (38)

by the definition (1) of the operator K. As shown in the
previous sections, the relevant part of K at low tempera-
ture is K + K1, which in turn reduces either to K1 in the
unphysical subspace (since K1 � K there), or to K in
the physical subspace, defined to be the null-space of K1.
Even if this separation into physical and unphysical sub-
spaces turned out to be wholly misguided, still the fact
would remain, that K has no component of the type K̃.
The neglected commutators cannot change this, because
(a) they can be independently suppressed, simply by in-
creasing the ratio U/t, and (b) they contain K at least
twice, as in [K, [V, K]], so they generate three-site and
spin-exchange correlations, which are absent in K̃.

In fact even more can be said: neither the classical con-
straint (32), nor the quantum constraint (30) can be used
to define an effective Hamiltonian. The reason is that they
are both negative statements, excluding some unwanted
correlations. An effective Hamiltonian, on the other hand,
acts to build up desirable correlations, not to reject unde-
sirable ones. For example, the Hartree-Fock Hamiltonian
has the respective Slater determinant as its ground state.
By contrast, the null-space conditions (30) or (32) give no
indication, which combination of states satisfying them
is quasi-stationary with respect to the Hubbard Hamil-
tonian. Having an effective Hamiltonian is equivalent to
knowing the approximate (saddle-point) equation of mo-
tion within the physical subspace, which is much more
than knowing which states are not in that subspace.

There is a simple and rather dramatic way to empha-
size that null-space conditions are not equations of mo-
tion — or, equivalently, that projectors are not effective
Hamiltonians. Within its regime of validity, one should
be able to use an effective Hamiltonian Heff just as if it
were fundamental, i.e. forgetting that its elementary de-
grees of freedom have an internal structure. In particular,

the same Heff should be used in real and imaginary time.
This reflects the requirement that the effective equations
of motion admit the ensemble construction, i.e. are ther-
malized in the usual sense. Now, what is the real-time
analogue of K + K1, equation (26)? It is found by taking
β = iτ in the function s(βU),

s(iτU) =
sin

(
τU
2

)

τU
2

− 1. (39)

Note the different dependence on U . To drive the point
home, consider the limit τU → ∞. Then s → −1, and

K + K1 → t
∑

〈i,j〉
σ

[
(1 − ni,−σ)a†

iσajσ(1 − nj,−σ) + (h.c.)
]

+ t
∑

〈i,j〉
σ

[
ni,−σa†

iσajσnj,−σ + (h.c.)
]

(40)

because the projector which appears may be rewritten:

1 + s(iτU)nij,−σ → 1 − nij,−σ =
(1 − ni,−σ)(1 − nj,−σ) + ni,−σnj,−σ.

The first term in equation (40) is just the projected-
hopping operator K̃, while the second makes the whole
expression particle-hole symmetric. The appearance of K̃
under these conditions is direct evidence that it is not an
effective Hamiltonian for the one-band Hubbard model. If
it were, it could be used in imaginary time as well, while
it was shown above that the correct imaginary-time ex-
pression is equation (26), not K̃.

The formal way out of this real/imaginary time conun-
drum is again to work in the subspace (30), since the ki-
netic operator then reverts to the microscopic (bare) K on
both axes. However, that is not the same as having an ef-
fective Hamiltonian. The prescription (33) correctly tran-
scribes Gutzwiller’s calculational framework to the regime
kT � t < U , but this is at best the first step in finding
the normal modes, still far from revealing them.

7 Discussion

The standard operator approach to an effective theory
without double occupation is to find a similarity trans-
formation [9,12]

SHS−1 = Heff + . . . , (41)

such that Heff does not couple to the doubly occupied
states to some given order, and truncate the remainder,
represented above by dots. The present paper observes
that such a procedure does not of itself guarantee a phys-
ical effective Hamiltonian. In particular, it is shown that
avoiding double occupation is a semiclassical perception of
the electron’s behavior at strong coupling, which does not
carry over to low temperature near half-filling. Imposing



D.K. Sunko: The Gutzwiller wave function as a disentanglement prescription 343

null-space conditions does not imply there exist thermody-
namically stable normal modes which satisfy them. If the
approximate normal modes are known, it may indeed be
possible to connect effective Hamiltonians with low-lying
states written in projector form, as in the cases of Hartree-
Fock and BCS. If they are not, using the connection by
formal analogy runs into trouble, such as not having the
same effective Hamiltonian on the real and imaginary time
axes. In other words, while an equation of motion may be
written as a null-space condition, (H −E) |Ψ〉 = 0, not all
null-space conditions are admissible constraints to some
given equations of motion. Put more simply, fixing both
the force and the effective constraint due to that force gen-
erally amounts to overspecifying the problem. To be cer-
tain the two are compatible is almost the same as knowing
the solution.

The projected-hopping operator K̃ is a case in point,
since it appears in the literature in two different contexts.
On the one hand, it may be derived by formal arguments
based on (41), guided by the wish to avoid some parts of
configuration space. On the other, the same K̃ can be ob-
tained by physical arguments from a more general three-
band model, where it is claimed to describe the propaga-
tion of excitations against the background of a particular
mode, the Zhang-Rice singlet [13]. In this case, the use of
K̃ as a true effective Hamiltonian depends only on whether
the correct hierarchy of background, excitation, and ther-
malization time scales is established. The point is that
one cannot derive an effective Hamiltonian without some
image of a physical mode which becomes quasi-stationary
under the action of the original one. The same is true in
the variational context. For example, in his description of
3He–4He mixtures [6], McMillan checked that the Jastrow
wave function for the 4He background reduced in the long-
wavelength limit to the density oscillations characterizing
Feynman’s formulation [2].

There is nothing wrong, in principle, with using pro-
jector language to guess properties of the solution, i.e.
to try and delimit the physical subspace. This is the
essence of Gutzwiller’s program, which the present work
expands systematically. It is shown here that the origi-
nal program is (at best) consistent in the physical regime
U � kT � EF , and that it may be carried over to the
regime kT � t < U formally very simply, by working
in the null-space of the ‘most troublesome’ commutator,
equation (30). This was identified with the physical sub-
space in the low-temperature, strong coupling limit, by
a projection argument: states which are not in this null-
space were found to be hyperexponentially suppressed at
low temperature, much more strongly than states con-
taining double occupation. The question may of course be
raised, whether keeping the simplification of Gutzwiller’s
disentanglement at low temperature is worth the price of
working with the condition (30). In effect, the preserva-
tion of disentanglement has replaced avoiding double oc-
cupation as a guiding principle for the construction of the
physical subspace. This requirement is at least consistent
between real and imaginary time, but it remains to be seen
whether it is compatible as a constraint with the micro-

scopic on-site repulsion. Physically, it amounts to the con-
jecture that low-lying excitations in the Hubbard model
near half-filling can be mapped onto an effective semiclas-
sical gas. It is encouraging for this point of view that the
on-site repulsion does not on the average scatter out of
the new physical subspace.

The condition (30) is the first precise quantum for-
mulation of Gutzwiller’s ‘smeared background’ assump-
tion. Its most interesting aspect is the role of phases. In-
deed the expression indicates that the admissible physical
states should be coherent, as suggested by the resonating-
valence-bond (RVB) arguments of Anderson [14]. This
should be contrasted with the viewpoint, based on the
no-double-occupancy condition (32), that the system is
insulating because the electron locally has difficulty over-
coming the repulsion U . The latter leads to an essentially
diffusive view of the Mott state, which was shown already
in reference [10] not to give physical insulating behavior,
precisely because it is incoherent, i.e. insensitive to relative
phases on neighboring sites. The fact that the interaction
loses coherence, [K, V ] = 0, as soon as nij,σ = 0, then
implies that the ground-state of the one-band Hubbard
model is likely to be antiferromagnetic at half-filling, even
at arbitrarily large U/t. This conjecture is specific to the
one-band model, since nij,σ appears in the commutator
only because both sites, connected by the hopping, are
subject to the local repulsion.

While this article was under review, new evidence
appeared that the no-double-occupancy condition is not
satisfied at low temperature in the one-band Hubbard
model [15]. It turns out that the upper Hubbard band
participates coherently in the low-energy density of states
at half-filling, even for U/t as large as 12.

To conclude, it has been shown that the Gutzwiller
variational ansatz is physically consistent only in the
regime U � kT � EF , inapplicable to the Mott transi-
tion. In the regime U > t � kT , the no-double-occupancy
condition is replaced by a quantum condition (30), sen-
sitive to local phases, which defines the physical sub-
space. Within this subspace, Gutzwiller’s disentanglement
scheme is recovered in the low-temperature, strong cou-
pling limit as well. However, as always, one cannot find
an effective Hamiltonian without knowing the dominant
slow modes. The quantum projection (30) is hopefully a
step forward in understanding their microscopic structure,
but is not an equation of motion.

Conversations with S. Barǐsić and E. Tutǐs are gratefully ac-
knowledged. Thanks are due to D. Svrtan for helping with
reference [11], and to P.W. Anderson for pointing out refer-
ence [6]. This work was supported by the Croatian Government
under Project 0119256.

Appendix A: Derivation of the first term
in equation (25)

Let A and B be two algebraic indeterminates. Define

X = ln
(
eA+Be−A

)
, Y = ln

(
e−AeA+B

)
. (A.1)
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It may be shown [11] that the parts linear in B of these
expressions are

X ≡B

eA − 1
A

◦B = XB, Y ≡B

1 − e−A

A
◦B = YB, (A.2)

where the notation ≡B means ‘equal up to terms lin-
ear in B’, and the circle operation is a commutator, like
in (13). The linear parts are called XB and YB, as noted.
Now

ln
(
e−Ae2A+2Be−A

)
= ln

(
eY eX

)

≡B ln
(
eYBeXB

) ≡B XB + YB,
(A.3)

where the second step is legal because neither X nor
Y contain terms of order zero in B, and the third is triv-
ial, since both XB and YB are linear in B. Adding XB

and YB , one obtains

ln
(
e−Ae2A+2Be−A

) ≡B

eA − e−A

A
◦ B. (A.4)

This gives the first term in equation (25), putting A =
−βV/2 and B = −βK/2.

For completeness, here is the derivation of (A.2) from
reference [11]. First, introduce a convenient notation for
left- and right-multiplication by A,

LB = AB, RB = BA, (A.5)

so that, for instance, the commutator with A is written
(L−R)B. Then one can write ApBAq = LpRqB, whence
it is trivial to show

eABe−A = eLe−RB = eL−RB = eA ◦ B, (A.6)

reverting to the circle notation. In the same vein,

(A + B)n ≡B An +
n−1∑

k=0

AkBAn−1−k

= An +
n−1∑

k=0

LkRn−1−kB, (A.7)

so that the factorization formula

(L − R)
n−1∑

k=0

LkRn−1−k = Ln − Rn (A.8)

yields

A ◦ (A + B)n ≡B (Ln − Rn)B = AnB − BAn, (A.9)

from which follows the useful expression

A ◦ eA+B ≡B eAB − BeA, (A.10)

upon summation over n.
To get (A.2), first note that X ≡B XB (no zeroth-order

term), hence eX ≡B 1 + XB. Then

A ◦ XB ≡B AeX − eXA = AeA+Be−A − eA+Be−AA

=
(
AeA+B − eA+BA

)
e−A ≡B

(
eAB − BeA

)
e−A

= eABe−A − B =
(
eA − 1

) ◦ B, (A.11)

where (A.10) and (A.6) were used in succession. This
means that in order to get XB itself, we need one less
commutator in each term on the right-hand side. In the
circle notation, this is just

XB =
eA − 1

A
◦ B, (A.12)

which is the first expression in (A.2). The second is ob-
tained in exactly parallel fashion.
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